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Introduction 

 
The mission of the CITL (Cyber Independent Testing Laboratories), a 501(c)3 non-profit 
organization, is to quantify and measure security hygiene in software. More specifically we have 
a focus on measuring the existence and coverage of security artifacts in the build process and 
the resulting strengths/weaknesses during execution. Through this we hope to bring 
transparency to security practices in software we all use and consume so that everyone can 
make better informed decisions as software consumers. 
 
To date CITL has spent significant time working on measurements of desktop software, 
primarily x86/x64 and ARM, across Windows, OS X, and Linux. Recently CITL has been 
expanding scope to include other targets, such as firmware images from embedded systems. 
 
During this work we discovered an issue with MIPS systems running Linux. This could have 
major implications for a variety of devices such as home routers, large scale infrastructure 
switches/routers, government communications, and security gear. 
 
For the period from 2001 to the present most of these systems lack basic stack based Data 
Execution Prevention (DEP). This appears to be the case even after two patches were 
introduced in 2016, one of which unintentionally introduced a way to bypass Address Space 
Layout Resolution (ASLR). We also observe a significant lag in adoption of the latest linux 
kernels, and related compiler toolchains, in many MIPS devices including end user devices.  
 
The long lived lack of basic stack DEP combined with the new security exposure (a mitigation 
bypass) introduced two years ago, the identification of the continuing related vulnerability 
introduced by the 2016 patches, and the slow adoption of kernels toolchains, leads us to believe 
that Linux MIPS systems will remain a soft target to exploit for years to come. 
 



This paper discusses the general problem we noticed with LINUX MIPS and the problem’s 
origins, provides a brief background on the technical terms involved, and then provides a deep 
dive on the problem’s discovery and implications.  
 
A companion paper takes a specific look at how this problem impacts home routers, a product 
category where MIPS is particularly common. The results show broad lack of security 
fundamentals across all of the Linux MIPS routers. 

Problems and Origins  
 
We trace the origin of missing stack based DEP, and the new ASLR mitigation bypass, 
ultimately back to ambiguity in the MIPS specification and how Linux had to handle that 
ambiguity. The specification does not mandate all behaviors for the Floating Point Unit (FPU) 
instructions/operations, so hardware implementations from different vendors were not consistent 
in their behavior. To address this, the Linux Kernel emulates some instructions in an attempt to 
normalize FPU behavior across different hardware implementations.  1

 
Due to differences in processor implementation, and for technical reasons which we explore 
below, the emulated floating point code is placed on the local thread stack and executed. An 
executable stack is a prerequisite for basic stack based buffer overflows and has been a well 
known security liability since roughly 1995. 
 
In 2003, Microsoft introduced DEP for program stacks. Similar features have been a part of the 
Linux Kernel Mainline since 2.6.8, which was released in 2004. 
 
However, Linux MIPS did not receive this ability until 2016. This means that from 2001 to 2016, 
the norm for Linux MIPS stacks was to be marked as executable. 
 
In July 2016, a patch was introduced to move code off of the stack for Linux MIPS. Later in 
August 2016, a patch was introduced to allow the kernel to mark the stack and heap as 
non-execute if requested by an application.  2

 
Unfortunately, the July 2016 patch moving code execution away from the stack created a new 
segment at a predictable location that was marked as read, write, and execute. This provides a 
core primitive with the ability to bypass DEP ​and ​ASLR. 
 
 

1 An overview of what the kernel is attempting to achieve by emulating FPU instructions may be found at 
https://www.linux-mips.org/wiki/Floating_point%23The_Linux_kernel_and_floating_point  
2 Of course, this “opt-in” approach meant that compilers and toolchains would need to be modified to 
create applications that requested a non-executable stack, as the default behavior continued to provide 
an executable stack. 

https://www.linux-mips.org/wiki/Floating_point%23The_Linux_kernel_and_floating_point


 
 
Timeline Key: 
 

(A) 2001: Linux introduces FPU emulation in kernel 2.4.3.4. This puts code on the stack and 
executes it there requiring the stack be marked as readable, writable, and executable. 

(B) 2016 July:  a new page was introduced to execute branch delay slot instructions. This 
was introduced to remove the code being inserted and executed on the program stack. 
However, this fix introduced a new fixed location segment that can be used to bypass 
ASLR defenses.  3

(C) 2016 August:  a patch to make the stack and heap non-execute was introduced, if a 
PT_GNU_STACK was present. However, as noted in the patch none of the toolchains 
used to build executables created a PT_GNU_STACK and the stack would remain 
executable until this was addressed in compiler toolchains.  4

 
In summary, Linux MIPS binaries have been easier to exploit by way of classic stack overflow 
attacks for over a decade, and continue to be so according to our examination of toolchain 
patches. Additionally, the fix that moved FPU emulation off the stack created a separate DEP 
and ​ASLR exposure.  Even if patches were introduced today for both the kernel and the 
toolchains, the lag in adoption implies it could be years before Linux MIPS devices can be 
expected to have basic DEP and ASLR. 

What is MIPS, what are ASLR and DEP, and why do they matter? 
MIPS is a RISC CPU architecture that was introduced over 30 years ago and is still in use today 
across communications and security systems, routers, and a range of other devices. MIPS chips 

3 ​https://github.com/torvalds/linux/commit/432c6bacbd0c16ec210c43da411ccc3855c4c010 
4 
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1a770b85c1f1c1ee37afd7cef52
37ffc4c970f04 

https://github.com/torvalds/linux/commit/432c6bacbd0c16ec210c43da411ccc3855c4c010
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1a770b85c1f1c1ee37afd7cef5237ffc4c970f04
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1a770b85c1f1c1ee37afd7cef5237ffc4c970f04


were used in high-end desktops (SGI) and MIPS was among the first architectures targeted by 
windows NT (before Intel i386). Presently MIPS chips are found in a large number of home 
routers and even high end Next Generation Firewalls (e.g. those made by Palo Alto Networks). 
While there are a few specific markets in which MIPS chips are still common, the most common 
place a consumer will interact with a likely be a device running on a MIPS chip will be in a 
embedded or IoT device. Even with the recent growth of ARM chips in the embedded device 
market, MIPS chips are still quite common. One of the most common classes of device to still 
use MIPS chips are home routers. In a survey of popular home routers , 8 of 14 devices use 
MIPS CPUs. More on the impacts of this particular security problem on those devices can be 
found in our companion paper . 5

 
ASLR, which stands for Address Space Layout Randomization, randomizes memory locations 
within a process. Some classes of attack rely upon certain code or data being at predictable 
locations. ASLR is a well-established defensive technique used to prevent memory corruption 
exploits from functioning correctly. 
 
DEP, which stands for Data Execution Prevention, aims to mark certain data and data locations 
as non-executable. This is done in an attempt to prevent attackers from providing their own 
code to execute when hijacking control of a target application. The most rudimentary part of 
DEP is marking a program’s stack segment as non-executable to prevent basic stack-based 
buffer overflow payloads. Like ASLR, DEP is an industry-standard security practice which has 
been used to prevent memory corruption exploits for years. 
 
One element of DEP is ensuring that the stack is not executable. In Linux, this means having 
the PT_GNU_STACK permissions specified as RW (read write). If the permissions aren’t 
specified, or the permissions include an X, then the stack is executable.  
 
ASLR and DEP work in tandem to protect against memory corruption attacks. The loss of either 
mitigation significantly reduces the overall efficacy of memory corruption defenses; absence of 
both is an even more serious exposure. Both of these mitigations have been available in 
modern operating systems (e.g. Linux, Windows, macOS), and architectures other than MIPS, 
for well over a decade as mentioned above. 
 
The next section explains how this unexpected absence in MIPS was caused by code in the 
Linux kernel. 

The security problem in a nutshell 
The issue involves how the Linux kernel loads and executes ELF files. The interactions between 
the kernel and compiler toolchains can be complex. The kernel needs to be able to handle 
binaries with and without aPT_GNU_STACK. The compilers need to know how best to generate 

5 ​https://cyber-itl.org/assets/papers/2018/build_safety_of_software_in_28_popular_home_routers.pdf  

https://cyber-itl.org/assets/papers/2018/build_safety_of_software_in_28_popular_home_routers.pdf


default ELF files so they will run successfully on the majority of kernel versions. This interaction 
causes a complex set of scenarios where security bypasses can be present, and where security 
is sometimes sacrificed in the name of broader compatibility. Below are two charts. The first 
chart breaks down different kernel versions and how the existence, or lack of, a stack segment 
can impact the runtime. The second chart shows the default output and permissions of the 
PT_GNU_STACK segment of GCC and clang. 
 

Kernel 
Version 

Stack Default 
without 
PT_GNU_STAC
K (RW) 

Stack Default 
with 
PT_GNU_STA
CK (RW)  

ASLR 
bypass 
introduced? 

Stack 
DEP 

Note 

2.4.3.4 
thru 4.7 

Executable N/A* - Not 
compatible with 
these versions 

No No *Specific code to 
handle this case 
was not introduced 
until 4.8.  
 
A binary with a 
no-exec 
PT_GNU_STACK 
would likely crash 
with FPU emulation 
code being on the 
stack. 

4.8 and 
above 

RWX RW Bypass Bypass* *The stack will be 
non-executable, but 
a new mapping will 
be at a static 
address and 
read-write-execute 

 
Because the presence of the PT_GNU_STACK segment affects how the kernel loads the 
process, below is a table of two different compilers and how they behave with Linux MIPS 
binaries. 
 

Compiler Outputs PT_GNU_STACK by 
default 

Permissions 

GCC (6.3.0) False N/A 

GCC (8.3.0 - from unstable 
branch) 

False 
(* see paragraph below) 

N/A 

Clang (3.8.1-24) True RWX 



It should be noted that as of writing this, 6.3.x is the version of GCC MIPS that is available 
through the main distro package managers Ubuntu, Debian, etc., for Intel/AMD and MIPS. This 
means that the vast majority of product manufacturers and developers will be using this 
toolchain. The ​GCC 8.2.0 MIPS compiler toolchain packages were only available in unstable 
and experimental branches for our Linux systems. 
 
Assuming a vendor builds their commercial products using unstable/experimental branches for 
their development environments, GCC 8.2 MIPS defaulted to an executable stack. We found it 
is possible to specify a non-executable stack explicitly to the linker, which then correctly outputs 
a GNU_STACK RW segment. 
 
The stable package of GCC MIPS cross-compilers for Linux distributions is GCC 6.3.0. For 
GCC compilers we note two challenges: 1) the stable package version being distributed and 
used is 6.3, and 2) the unstable/experimental 8.2 MIPS packages default to an executable stack 
on MIPS binaries. These issues make the fact that GCC 8.2 *can* output the correct stack 
permissions relatively moot in practice . 6

 

What products do I use that might be impacted? 
For home routers running Linux MIPS an executable stack and/or the fix, which introduces a 
new DEP and ASLR bypass, lowers the cost to attackers to leverage bugs that may have 
otherwise been non-exploitable or costly to exploit reliably. Lower cost targets are more 
attractive to a range of adversaries. From the consumer reports article , CITL compiled a list of 7

14 popular home routers, 10 of which had firmware available to the public online. Of the 10 
firmware images we retrieved, 70% of the devices were MIPS based. Analysis of these MIPS 
based home routers is in the companion paper. 
 
High end systems in corporate or communications roles running Linux on MIPS may also exhibit 
this security deficiency. Some examples of systems advertising that they are built on MIPS 
processors, for both their data and management backplanes, include Next Generation Firewalls 
such as Palo Alto Networks {PA-200, PA-500, PA-2000} . 8

 

6 A GCC 8 cross compiler package is listed in the unstable branch for Debian with dependencies that did 
not allow even our unstable and experimental branch systems to correctly retrieve and install the package 
correctly. Across hundreds of current (as of September 2018) firmware images we note that binaries for 
home routers, unsurprisingly, have been built with toolchains comparable or earlier than 6.3.0. Further we 
noticed, as we mention below, that the same compiler toolchains we testing natively within a MIPS 
environment and being used to cross-compile to MIPS targets produced different PT_GNU_STACK 
outputs in the case of Clang. 
 
7 ​https://www.consumerreports.org/products/wireless-routers/ratings-overview/  
8 See, for example, this Common Criteria Evaluation (CCE) for Palo Alto products: 
https://www.commoncriteriaportal.org/files/epfiles/st_vid10392-add1.pdf​. It is telling that the 
aforementioned CCE does not consider differences in processors as a security-relevant issue. 

https://www.consumerreports.org/products/wireless-routers/ratings-overview/
https://www.commoncriteriaportal.org/files/epfiles/st_vid10392-add1.pdf


Both the issue presented in this paper for Linux on MIPS and recent processor side channel 
issues such as Meltdown and Spectre help highlight that CCE focuses more on design 
processes rather than the security of the end product. We believe this is a common problem 
across many evaluations that imply “security”, but are focused much more on backend 
processes and uniformity (see section “Changes to TOE:”, item 4, in the above link). 
 
Regarding Palo Alto Network products, we have not evaluated them. We are using them as an 
example of types of products that are Linux based and have MIPS architectures that could 
suffer from these issues. We hope vendors explain how they have addressed or mitigated these 
issues or otherwise provide transparency so that customers may make informed choices or 
otherwise check for themselves. 

How to check your system 
Examining the ELF program headers in binaries on the system will reveal the presence or 
absence of a PT_GNU_STACK segment. If this segment is ​not​ present the kernel will assume 
READ_IMPLIES_EXEC and mark the stack, and other mappings, as read, write, and execute. 
The program ​readelf ​ can be used to show the program headers of binaries. 
 
user@debian:~$ readelf -l /bin/cat 
 
Elf file type is DYN (Shared object file) 
Entry point 0x2450 
There are 11 program headers, starting at offset 52 
 
Program Headers: 
 Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align 
 PHDR           0x000034 0x00000034 0x00000034 0x00160 0x00160 R E 0x4 
 INTERP         0x000194 0x00000194 0x00000194 0x0000d 0x0000d R   0x1 
 ABIFLAGS       0x0001c8 0x000001c8 0x000001c8 0x00018 0x00018 R   0x8 
 REGINFO        0x0001e0 0x000001e0 0x000001e0 0x00018 0x00018 R   0x4 
 LOAD           0x000000 0x00000000 0x00000000 0x081b4 0x081b4 R E 0x10000 
 LOAD           0x008f28 0x00018f28 0x00018f28 0x0039c 0x00528 RW  0x10000 
 DYNAMIC        0x00021c 0x0000021c 0x0000021c 0x00120 0x00120 R   0x4 
 NOTE           0x0001a4 0x000001a4 0x000001a4 0x00020 0x00020 R   0x4 
 NOTE           0x0001f8 0x000001f8 0x000001f8 0x00024 0x00024 R   0x4 
 GNU_RELRO      0x008f28 0x00018f28 0x00018f28 0x000d8 0x000d8 R   0x1 
 NULL           0x000000 0x00000000 0x00000000 0x00000 0x00000     0x4 

 
In the above we notice an ​absence​ of PT_GNU_STACK in the list of Program Headers column. 
If you have shell access you can perform this check on the system directly.   Otherwise, you 
may need to take other steps to extract binaries from the system and examine them manually or 
with an application like ​readelf ​ elsewhere. 
 
If you have do have shell access on the target system you can see the effect at runtime looking 
at the /proc entries. Here we view the /proc entries for the same binary as before. 



 
user@debian:~$ cat /proc/self/maps 
559be000-559c7000 r-xp 00000000 08:01 20         /bin/cat 
559d6000-559d7000 r-xp 00008000 08:01 20         /bin/cat 
559d7000-559d8000 rwxp 00009000 08:01 20         /bin/cat 
55a04000-55a25000 rwxp 00000000 00:00 0          [heap] 
77985000-779a7000 rwxp 00000000 00:00 0 
779a7000-77b42000 r-xp 00000000 08:01 261167     /usr/lib/locale/locale-archive 
77b42000-77cae000 r-xp 00000000 08:01 130656     /lib/mipsel-linux-gnu/libc-2.24.so 
77cae000-77cbe000 ---p 0016c000 08:01 130656     /lib/mipsel-linux-gnu/libc-2.24.so 
77cbe000-77cc1000 r-xp 0016c000 08:01 130656     /lib/mipsel-linux-gnu/libc-2.24.so 
77cc1000-77cc4000 rwxp 0016f000 08:01 130656     /lib/mipsel-linux-gnu/libc-2.24.so 
77cc4000-77cc6000 rwxp 00000000 00:00 0 
77cc6000-77ce9000 r-xp 00000000 08:01 130652     /lib/mipsel-linux-gnu/ld-2.24.so 
77ced000-77cef000 rwxp 00000000 00:00 0 
77cf3000-77cf4000 r-xp 0019a000 08:01 261167     /usr/lib/locale/locale-archive 
77cf4000-77cf6000 rwxp 00000000 00:00 0 
77cf6000-77cf7000 r--p 00000000 00:00 0          [vvar] 
77cf7000-77cf8000 r-xp 00000000 00:00 0          [vdso] 
77cf8000-77cf9000 r-xp 00022000 08:01 130652     /lib/mipsel-linux-gnu/ld-2.24.so 
77cf9000-77cfa000 rwxp 00023000 08:01 130652     /lib/mipsel-linux-gnu/ld-2.24.so 
7fae9000-7fb0a000 rwxp 00000000 00:00 0          [stack] 
7ffff000-80000000 rwxp 00000000 00:00 0 

 
In the above output we see that not only is the stack marked as executable, but so is the heap 
and other mappings, shown in red. 
 
If your system is running a Linux kernel version 4.8 or higher we recommend checking for the 
emulation page in the maps. Again with shell access on the system, ​cat /proc/self/maps 
and look for a single executable anonymous mapping. On 32 bit systems it should be located at 
0x7ffff000 and on 64 bit systems it should be 0xfffffff000. An example of the proc entries is 
shown below,marked in red. If your system has the mapping but it is at a different address, it is 
possible your system is using a non-standard page size. In the following output we note the fix 
to the executable stack, but also the creation of the new emulation segment as readable, 
writable, and executable at the expected fixed address range.  
 
00400000-00407000 r-xp 00000000 08:01 209        /home/user/test_stack 
00416000-00417000 rwxp 00006000 08:01 209        /home/user/test_stack 
77b0d000-77b0e000 r--p 00000000 00:00 0          [vvar] 
77b0e000-77b0f000 r-xp 00000000 00:00 0          [vdso] 
7fae4000-7fb05000 rw-p 00000000 00:00 0          [stack] 
7ffff000-80000000 rwxp 00000000 00:00 0  

 



How did CITL find this? Why didn’t people know about this 
sooner? 
The absence of these basic security defenses is invisible to the developer unless 
measurements of the resulting binaries are performed. Such measurements are not standardly 
done in the industry. CITL is the first organization to measure the usage of security measures in 
consumer software products at scale and we came across this surprising omission in the course 
of our work. While it is well known exploits of the past took significant advantage of an 
executable stack, and modern exploits often need to bypass ASLR, we believe that this 
significant degradation in basic security (and the introduction of a DEP and ASLR bypass in the 
patched versions) in many operational environments is largely unknown to consumers, 
developers, and security researchers. It is apparent that this issue is at least partially 
understood by some of the kernel developers and compiler writers based upon comments in 
their code, as we will show below, however it is unknown to us if the full security ramifications 
were considered.  
 
In the process of expanding the CITL binary analysis tools that measure security hygiene in 
software to include MIPS targets, the MIPS binaries we collected for Debian (9.4, kernel: 
4.9.0-6-4kc-malta) and some IoT routers caught our eye . Parts of our application armoring 9

hygiene checks for the Linux ELF p_flags field in the program headers for the PT_GNU_STACK 
segment. If the executable bit is set and this header is present, the loader in modern Linux will 
map the segment as read-write-executable. However the MIPS binaries were odd as they 
completely lacked a PT_GNU_STACK segment. This results in the stack, heap, and other 
mappings being marked as read-write-execute. Thus a security weakness that was thought to 
have been addressed for over a decade appears to be present in these MIPS targets. 
 
The fact that it has taken so long for this safety issue to come to light highlights the need for 
post-build safety checks on software. Other types of software testing are or are becoming 
industry standard, but it is not standard practice after compiling code to check that the resultant 
binaries have all intended safety features. Given how complex modern compiler toolchains are, 
edge cases and unintended results are inevitable. We hope that our work at CITL to bring 
issues like this one to light will provide the necessary motivation to introduce post-build testing 
to standard software production processes. 
 

Technical Walkthrough 
Readers who are not interested in the technical deep dive into the Linux kernel can skip to the 
Conclusion section. 
 

9 Our methodologies can be found online (​https://cyber-itl.org/about/methodology/​) and in the talks we 
have given at conferences such as BlackHat, DefCon, and CCC Congress. 

https://cyber-itl.org/about/methodology/


Walkthrough of the Kernel 
 
To understand this behavior we need to understand how Linux handles files without a stack 
segment. To do this we walk through the kernel to find the ‘default’ behavior and permissions 
applied. Starting in the ​load_elf_binary() ​ function, we see the loader makes an 
architecture-specified call to determine if a READ flag implies EXECUTE flags: 
 
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/fs/binfmt_
elf.c#L876 
 
if (elf_read_implies_exec(loc->elf_ex, executable_stack)) 

current->personality |= READ_IMPLIES_EXEC; 

 
Since this function uses the ‘executable_stack’ variable we work backwards to understand its 
definition. 
 
The default value (​EXSTACK_DEFAULT ​) is assigned to executable_stack at: 
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/fs/binfmt_
elf.c#L705 
 
int executable_stack = EXSTACK_DEFAULT; 

 

Later on the code checks the program headers for the PT_GNU_STACK and overwrites the 
default value: 
 
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/fs/binfmt_
elf.c#L810 
 
case PT_GNU_STACK: 

if (elf_ppnt->p_flags & PF_X) 

executable_stack = EXSTACK_ENABLE_X; 

else 

executable_stack = EXSTACK_DISABLE_X; 

break; 
 
 
The ELF files that we saw on these MIPS systems would never hit this switch case because 
they are missing the PT_GNU_STACK segment. This means the ‘executable_stack’ variable 
remains ​EXSTACK_DEFAULT ​.  
 
Returning to the architecture specific call to ‘​elf_read_implies_exec ​,’ we see how the 
executable_stack variable is used. 

https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/fs/binfmt_elf.c#L876
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/fs/binfmt_elf.c#L876
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/fs/binfmt_elf.c#L705
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/fs/binfmt_elf.c#L705
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/fs/binfmt_elf.c#L810
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/fs/binfmt_elf.c#L810


https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/arch/mips/
kernel/elf.c#L329 
 
int mips_elf_read_implies_exec(void *elf_ex, int exstack) 

{ 

if (exstack != EXSTACK_DISABLE_X) { 

/* The binary doesn't request a non-executable stack */ 

return 1; 

} 

 

if (!cpu_has_rixi) { 

/* The CPU doesn't support non-executable memory */ 

return 1; 

} 

 

return 0; 

} 

 
The ​mips_elf_read_implies_exec() ​ checks the exstack argument to see if it is not 
EXSTACK_DISABLE_X ​, then falls through to return 1. This means that since the exstack is still 
EXSTACK_DEFAULT ​, the code will return 1. Thus, if the ​PT_GNU_STACK ​ header is not present, 
it will always set the ​READ_IMPLIES_EXEC ​ flag in 'current->personality'.. 
 
How does the ​READ_IMPLIES_EXEC ​ flag affect the stack allocation during loading? The 
setup_arg_pages() function performs the actual mapping: 
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/fs/exec.c#
L742 
 
vm_flags = VM_STACK_FLAGS; 
 
... 
 
if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 

vm_flags |= VM_EXEC; 
else if (executable_stack == EXSTACK_DISABLE_X) 

vm_flags &= ~VM_EXEC; 
 
 
Here the code checks for ​EXSTACK_ENABLE ​ and ​EXSTACK_DISABLE ​, but sets vm_flags to the 
default flag value first. Since ​executable_stack ​ is still ​EXSTACK_DEFAULT ​ the value of 
VM_STACK_FLAGS ​ will decide the stack's execute flag, which is defined here: 
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/include/lin
ux/mm.h#L277 
 

https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/arch/mips/kernel/elf.c#L329
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/arch/mips/kernel/elf.c#L329
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/fs/exec.c#L742
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/fs/exec.c#L742
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/include/linux/mm.h#L277
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/include/linux/mm.h#L277


#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 

 

We see there is an addition of ​VM_STACK_DEFAULT_FLAGS ​, which is defined on a per 
architecture level. For the per-architecture value we once again look at the Linux 
implementation for MIPS as differing architectures can overwrite the value. 
 
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/arch/mips/
include/asm/page.h#L250 
 
#define VM_DATA_DEFAULT_FLAGS \ 

(VM_READ | VM_WRITE | \ 

 ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) | \ 

 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 

 
 
Here we see the ​current->personality ​ flags are checked for ​READ_IMPLIES_EXEC ​, 
which was set previously and thus our default flags include ​VM_EXEC ​. 
 

Implications of READ_IMPLIES_EXEC 
The lack of a PT_GNU_STACK segment will not only affect how the stack’s permissions are 
defined at load time but also other functions such as ​mmap() ​. Next let’s follow the personality 
flags through the loader and kernel to get an idea of how this can impact a system. 
 
Looking at ​mmap ​ we see there are other locations this flag can cause ​VM_EXEC ​ to be set on 
allocations: 
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/mm/mmap
.c#L1379 
 
if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC)) 

if (!(file && path_noexec(&file->f_path))) 

prot |= PROT_EXEC; 

 
 
Any mappings of anonymous or shared memory can be affected, causing the mappings to be 
marked executable. 
 

Debian Mips32el on QEMU: 
In order to verify expected behaviors we spun up a Debian 9.4 mips32el vm in QEMU. Below 
are the program headers and current mappings of ​cat ​: 
 

user@debian:~$ readelf -l /bin/cat 

https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/arch/mips/include/asm/page.h#L250
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/arch/mips/include/asm/page.h#L250
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/mm/mmap.c#L1379
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/mm/mmap.c#L1379


 

Elf file type is DYN (Shared object file) 

Entry point 0x2450 

There are 11 program headers, starting at offset 52 

 

Program Headers: 

 Type           Offset   VirtAddr   PhysAddr   FileSiz MemSiz  Flg Align 

 PHDR           0x000034 0x00000034 0x00000034 0x00160 0x00160 R E 0x4 

 INTERP         0x000194 0x00000194 0x00000194 0x0000d 0x0000d R   0x1 

     [Requesting program interpreter: /lib/ld.so.1] 

 ABIFLAGS       0x0001c8 0x000001c8 0x000001c8 0x00018 0x00018 R   0x8 

 REGINFO        0x0001e0 0x000001e0 0x000001e0 0x00018 0x00018 R   0x4 

 LOAD           0x000000 0x00000000 0x00000000 0x081b4 0x081b4 R E 0x10000 

 LOAD           0x008f28 0x00018f28 0x00018f28 0x0039c 0x00528 RW  0x10000 

 DYNAMIC        0x00021c 0x0000021c 0x0000021c 0x00120 0x00120 R   0x4 

 NOTE           0x0001a4 0x000001a4 0x000001a4 0x00020 0x00020 R   0x4 

 NOTE           0x0001f8 0x000001f8 0x000001f8 0x00024 0x00024 R   0x4 

 GNU_RELRO      0x008f28 0x00018f28 0x00018f28 0x000d8 0x000d8 R   0x1 

 NULL           0x000000 0x00000000 0x00000000 0x00000 0x00000     0x4 

 

user@debian:~$ cat /proc/self/maps 

559be000-559c7000 r-xp 00000000 08:01 20         /bin/cat 

559d6000-559d7000 r-xp 00008000 08:01 20         /bin/cat 

559d7000-559d8000 rwxp 00009000 08:01 20         /bin/cat 

55a04000-55a25000 rwxp 00000000 00:00 0          [heap] 

77985000-779a7000 rwxp 00000000 00:00 0 

779a7000-77b42000 r-xp 00000000 08:01 261167     /usr/lib/locale/locale-archive 

77b42000-77cae000 r-xp 00000000 08:01 130656     /lib/mipsel-linux-gnu/libc-2.24.so 

77cae000-77cbe000 ---p 0016c000 08:01 130656     /lib/mipsel-linux-gnu/libc-2.24.so 

77cbe000-77cc1000 r-xp 0016c000 08:01 130656     /lib/mipsel-linux-gnu/libc-2.24.so 

77cc1000-77cc4000 rwxp 0016f000 08:01 130656     /lib/mipsel-linux-gnu/libc-2.24.so 

77cc4000-77cc6000 rwxp 00000000 00:00 0 

77cc6000-77ce9000 r-xp 00000000 08:01 130652     /lib/mipsel-linux-gnu/ld-2.24.so 

77ced000-77cef000 rwxp 00000000 00:00 0 

77cf3000-77cf4000 r-xp 0019a000 08:01 261167     /usr/lib/locale/locale-archive 

77cf4000-77cf6000 rwxp 00000000 00:00 0 

77cf6000-77cf7000 r--p 00000000 00:00 0          [vvar] 

77cf7000-77cf8000 r-xp 00000000 00:00 0          [vdso] 

77cf8000-77cf9000 r-xp 00022000 08:01 130652     /lib/mipsel-linux-gnu/ld-2.24.so 

77cf9000-77cfa000 rwxp 00023000 08:01 130652     /lib/mipsel-linux-gnu/ld-2.24.so 

7fae9000-7fb0a000 rwxp 00000000 00:00 0          [stack] 

7ffff000-80000000 rwxp 00000000 00:00 0 

 



user@debian:~$ uname -a 

Linux debian 4.9.0-6-4kc-malta #1 Debian 4.9.82-1+deb9u3 (2018-03-02) mips GNU/Linux 

 
Here we see the expected output given what was observed in the kernel with the stack, heap, 
and other mappings marked as executable. 
 
Checking other programs shipped with Debian MIPS, in ​/usr/bin ​ there were only 6 programs 
that included a PT_GNU_STACK segment, one of which was marked RWX. The other 5 were 
RW. The remaining 322 all lacked the PT_GNU_STACK segment and so, at runtime, would 
have RWX mappings similar to the /bin/cat given above. 
 
As the kernel version (4.9) is after the non-executable stack patch was introduced yet the vast 
majority of binaries still lacked basic stack DEP, we observe the lag and interplay between 
compiler toolchains creating binaries that opt-in to the DEP now being supported by the kernel. 
This largely renders the kernel security feature meaningless in such systems. 
 
For final verification, we wrote a small program to jump execution onto the stack then back to 
main. By placing a '​jr $ra ​' instruction on the current stack address and calling it like a function 
pointer we were able to jump on and back off the stack. Doing this and single stepping allowed 
us to verify that the stack was indeed executable in run time. 
 
We confirmed on other CPU architectures that the default behavior during runtime for a binary 
lacking a RW PT_GNU_STACK segment results in the stack and all anonymous mappings 
marked as RWX, thus empirically confirming the need for a RW PT_GNU_STACK segment to 
enable core DEP for applications within Linux. 
 
 

Why is GCC/ld not emitting a PT_GNU_STACK segment? 
 
Now we ask the question, why is GCC/ld not emitting a PT_GNU_STACK segment for Linux 
MIPS targets, even several years after the kernel could honor it? After digging through Linux 
and GCC mailing lists we found interesting answers. 
 
The initial problem is as we have described: Because of differences in MIPS FPU coprocessors, 
sometimes the Linux kernel will need to emulate instructions for userland. Since there are 
non-fpu instructions that will be in the delay slot, these instructions need to run in the userland 
context, so they are placed on the userspace thread stack and executed from there. This is 
captured in the following 2014 comment by David Daney from Cavium: 

 
https://patchwork.kernel.org/patch/5039371/ 
 



"​MIPS floating point support requires that any instruction that cannot 
be directly executed by the FPU, be emulated by the kernel. Part of 
this emulation involves executing non-FPU instructions that fall in 
the delay slots of FP branch instructions. Since the beginning of 
MIPS/Linux time, this has been done by placing the instructions on the 
userspace thread stack, and executing them there, as the instructions 
must be executed in the MM context of the thread receiving the 
Emulation. 
 
Because of this, the de facto MIPS Linux userspace ABI requires that 
the userspace thread have an executable stack.  It is de facto, 
because it is not written anywhere that this must be the case, but it 
is never the less a requirement. 
 
Problem: 
 
How do we get MIPS Linux to use a non-executable stack in the face of 
the FPU emulation problem? 
 
Since userspace desires to change the ABI, put some of the onus on the 
userspace code.  Any userspace thread desiring a non-executable stack, 
must allocate a 4-byte aligned area at least 8 bytes long with that 
has read/write/execute permissions and pass the address of that area 
to the kernel with the new sys_set_fpuemul_xol_area system call. 
 
This is similar to how we require userspace to notify the kernel of 
the value of the thread local pointer.​" 
 
Another attempt at addressing the non-executable stack problem occurred in 2015 and can be 
found here: https://www.linux-mips.org/archives/linux-mips/2015-08/msg00118.html  

Both attempts seem to be stalled for a number of reasons, mostly because they break userland 
and backwards compatibility. The authors of these patches acknowledged that the lack of a 
PT_GNU_STACK has the behavior of making the stack executable. 

As noted in our timeline at the beginning of this document, a 2016 kernel patch, present in 
v4.8~rc1 and later, finally moved the FPU emulation off of the stack and into a newly mapped 
region. 
 
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=432c6bacbd0c16ec21
0c43da411ccc3855c4c010 
 
This theoretically allows a compiler to include a PT_GNU_STACK segment without breaking 
userspace, but compilers have not all caught up to make use of that new feature. GCC/ld 

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=432c6bacbd0c16ec210c43da411ccc3855c4c010
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=432c6bacbd0c16ec210c43da411ccc3855c4c010


(6.3.0), released at the end of 2016 and the primary compiler for many environments such as 
Debian MIPS, appear to default to not emitting a PT_GNU_STACK segment. 
  
LLVM 6.0.0 defaults to emitting a PT_GNU_STACK with RW permissions ​when cross compiling​, 
targeting mips-linux, however we found that Clang (3.8.1-24) running in a Debian MIPS 
environment ​still​ outputs a RWX stack segment for both MIPS 32 and 64. 
 
Looking over the GCC/glibc mailing list, there was discussion and pre-work to attempt to have 
the compiler toolchain ready to support the non-executable PT_GNU_STACK that was being 
finalized in 2016. 
 
https://sourceware.org/ml/binutils/2016-02/msg00087.html 
https://sourceware.org/ml/libc-alpha/2016-02/msg00076.html 
 
As mentioned above, the vast majority of the firmware images CITL has reviewed appear to 
have been built using toolchains that do not emit a RW PT_GNU_STACK even after the kernel 
patches had been released to permit this. We wondered about more recent versions of GCC. 
Going through the release change notes for GCC, 
https://www.gnu.org/software/gcc/releases.html​, from 2016 through 2018, we find no reference 
to the non-executable stack changes for MIPS.  
 
To reiterate the compiler defaults and capabilities mentioned above, 6.3.x is the version of GCC 
MIPS that is available through the main distro package managers for Ubuntu, Debian, …,  for 
Intel/AMD and MIPS. This means that the vast majority of product manufacturers and 
developers will be using this toolchain. The ​GCC 8.2.0 MIPS compiler toolchain packages are 
available in unstable and experimental branches for our Linux systems. Even assuming a 
vendor builds their commercial products using unstable/experimental branches for their 
development environments, which we find unlikely, GCC 8.2 MIPS still defaults to an executable 
stack. It is, using 8.2, possible to specify a non-executable stack to the linker explicitly which 
then correctly outputs a GNU_STACK RW segment but we find very little evidence of this in 
deployed systems. Similarly, the stable package of GCC MIPS cross-compilers for Linux 
distributions is GCC 6.3.0. Thus for GCC compilers we note the following challenges: 1) the 
stable package version being distributed and used is 6.3, and 2) the unstable/experimental 8.2 
MIPS packages default to an executable stack on MIPS binaries. These issues make the fact 
that GCC 8.2 *can* output the correct stack permissions relatively moot in practice . 10

10 ​A GCC 8 cross compiler package is listed in the unstable branch for Debian with 
dependencies that did not allow even our unstable and experimental branch systems to 
correctly retrieve and install the package correctly. Across hundreds of current (as of September 
2018) firmware images we note that binaries for home routers, unsurprisingly, have been built 
with toolchains comparable or earlier than 6.3.0. Further we noticed, as we mention below, that 
the same compiler toolchains we testing natively within a MIPS environment and being used to 
cross-compile to MIPS targets produced different PT_GNU_STACK outputs in the case of 
Clang. 

https://sourceware.org/ml/binutils/2016-02/msg00087.html
https://sourceware.org/ml/libc-alpha/2016-02/msg00076.html
https://www.gnu.org/software/gcc/releases.html


 
Even assuming a toolchain that produced binaries with a default PT_GNU_STACK RW and a 
recent kernel that permits this without breaking floating point compatibility, there is a significant 
problem. Irrespective of the markings of the stack, heap, and anonymous mappings, the kernel 
NX stack patch we have been discussing introduces a new segment in all processes at a ​fixed 
location​ and that is marked as readable, writable, and ​executable​ (​RW​X​). 
 
We now take a closer look at this newly introduced issue. 
 

A closer look at the NX stack Linux kernel patch and the introduction of an 
ASLR/DEP bypass primitive 
 
Even though it was becoming apparent that it was not only rare to find binaries built with the 
safety of a non-executable stack in shipping products we wanted to evaluate the runtime of 
binaries that embodied a RW GNU_STACK segment. While we expected things to be fine, we 
were surprised by what we observed when running on a modern MIPS kernel. We used clang, 
in cross compile mode, in order to build a few test programs with correct RW stack segments, 
as we noted before that we were unable to get native clang output a proper RW GNU_STACK. 
We then ran the binary to inspect how the segments were mapped. While the stack and other 
segments are now correctly marked RW, we found that the patch introduced in 4.8-rc1 (commit: 
432c6bacbd0c16ec210c43da411ccc3855c4c010) created an RWX segment mapped at a static 
address for every userland process. A static address combined with a RWX permission 
effectively creates a universal ASLR and DEP bypass in every userland process. 
 

00400000-00407000 r-xp 00000000 08:01 209        /home/user/test_stack 

00416000-00417000 rwxp 00006000 08:01 209        /home/user/test_stack 

77b0d000-77b0e000 r--p 00000000 00:00 0          [vvar] 

77b0e000-77b0f000 r-xp 00000000 00:00 0          [vdso] 

7fae4000-7fb05000 rw-p 00000000 00:00 0          [stack] 

7ffff000-80000000 rwxp 00000000 00:00 0  

 
The program has a non-executable stack as expected but that final mapping now shows a 
different RWX segment as can be seen above, highlighted in red. We compiled the binary for 
position independent code, to ensure an ASLR compatible binary. After running the program 
multiple times, rebooting and running it and other programs multiple times, the 0x7ffff000 
mapping remained stable at this fixed address. 
 
The following code demonstrates that we can indeed place code within the new at-risk segment, 
jump to the newly placed code, and execute it. This is essentially the same code that we used to 
test execution on the stack, but placed the ‘ja $ra’ onto the new fixed address mapping. 

 



 
 
#include <stdio.h> 

#include <stdlib.h> 

#include <string.h> 

#include <unistd.h> 

 

int main(void) { 

    // set a pointer to the vfpu emulation page address  

    void* p = (void *)0x7ffff000; 

    printf("%p\n", (void*)p); 

 

    // construct a function pointer from p 

    void (*func_ptr)(void) = p; 

  

    // 'jr $ra' mips32el instruction bytes  

    char code[] = {0x08, 0x00, 0xe0, 0x03, 0x00, 0x00, 0x00, 0x00}; 

  

    // copy the instruction to the vfpu page 

    memcpy(p, code, 8); 

 

    // call the function pointer, this should then directly return back 

    (*func_ptr)(); 

 

    // print out the current maps of the process 

    char cmd[200]; 

    sprintf(cmd, "cat /proc/%d/maps", getpid()); 

    system(cmd); 

 

    return 0; 

} 

 
 
Output mipsel Debian 9.4 
 

$ /test-exec  

0x7ffff000 

00400000-00407000 r-xp 00000000 08:01 239        /test-exec 

00417000-00418000 rwxp 00007000 08:01 239        /test-exec 

77a93000-77a94000 r--p 00000000 00:00 0          [vvar] 

77a94000-77a95000 r-xp 00000000 00:00 0          [vdso] 

7f8b3000-7f8d4000 rw-p 00000000 00:00 0          [stack] 

7ffff000-80000000 rwxp 00000000 00:00 0  

 
 
 
Taking a closer look at the patch we find where the mapping used for emulation is made: 
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/arch/mips/
kernel/vdso.c#L110 

https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/arch/mips/kernel/vdso.c#L110
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/arch/mips/kernel/vdso.c#L110


 
base = mmap_region(NULL, STACK_TOP, PAGE_SIZE, 

VM_READ|VM_WRITE|VM_EXEC| 
VM_MAYREAD|VM_MAYWRITE|VM_MAYEXEC, 
0, NULL); 

 
The address of the mapping is set to STACK_TOP, which is defined: 
 
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/arch/mips/
include/asm/processor.h#L87 
 
#define STACK_TOP ((TASK_SIZE & PAGE_MASK) - PAGE_SIZE) 
 
Because TASK_SIZE is hardcoded for either 32 or 64 bit, and PAGE_MASK / PAGE_SIZE are 
both static values based on the MMU page size, the mapping is deterministic. This means the 
FPU emulation mapping segment is never randomized by ASLR. This is particularly problematic 
because it means that every userland process running on a Linux MIPS target has a static 
mapping that is RWX. To be more blunt: this provides a deterministic location for an exploit 
developer targeting Linux MIPS to place shellcode, providing a basic bypass ASLR and DEP 
primitive. 
 
We also confirmed the same behavior occurs in a Debian 9.4 MIPS64 VM: 
 
ffffcdc000-ffffcfd000  rwxp 00000000 00:00 0    [stack] 
fffffff000-10000000000 rwxp 00000000 00:00 0  

 
The mapping is at a slightly different location, but still with RWX permissions and a deterministic 
static address. If you find that your system has the mapping but is at a different address, it is 
possible your system is using a different page size. 

Conclusion 
We observed many Linux MIPS systems in the wild that are impacted by this. Further, the 2016 
patches appear to be only partially effective at addressing the DEP issue, as they introduce a 
statically located mapping that is marked RWX. This means that the problem has been moved, 
rather than fixed.  
 
From our analysis of specific Linux MIPS firmware images we notice an astonishing lack of 
many basic security features in addition to those mentioned in this paper, and also a blend of 
programs exhibiting this specific problematic behavior and a few that do not -- even on the same 
system. One hypothesis for this is that vendors may be acquiring different subsections of code 
from various subcontractors or 3rd parties and/or the different output based on whether native 

https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/arch/mips/include/asm/processor.h#L87
https://github.com/torvalds/linux/blob/21b9f1c7e319f654de3b2574fe8d4e4114c9143f/arch/mips/include/asm/processor.h#L87


or cross compilation is being performed. We examine these products and their measurements 
further in our recent report on the home router market . 11

 
Irrespective of the cause of the variance, we note that the majority of Linux MIPS builds are 
likely to contain these issues. The recency of the FPU emulation patch, and the means it 
introduces to sidestep ASLR and DEP cause significant concern. 
 
Many of these concerns could be detected before releasing software by companies in their 
products by implementing simple tests and checks to ensure the resultant binaries have their 
intended safety features. Our evaluation of Linux MIPS products shows this is not happening. 
 
Historical use of an executable stack on other architectures lingered for years but has largely 
been addressed in modern (x86) Operating Systems. Linux MIPS suffered from this for many 
years, and continues to do so. The recent attempt an enabling mitigations further introduces 
new security concerns. 
 
We believe Linux MIPS will continue to be a soft target for many years to come. 
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